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ABSTRACT 

We use the core model for one strong cardinal to show that the Chang 

Conjec ture  (Rnq-2, b~nq-1) :=~ ( ~ n + l ,  ~n)  together  wi th  2 ~ - 1  = lqn implies, 

for 1 < n < co, the  exis tence of an  inner  model  wi th  a s t rong  cardinal.  An  

essential  s tep  of our proof  is an  appl icat ion of the  Git ik G a m e  which also 

admi t s  a presenta t ion .  

Let us first recall the definition. 

Definition 1: Let ~ be an infinite cardinal. (~++, ~+) ~ (to +, ~) denotes the 

following model theoretic assertion. For any structure ~ = (A; P , . . . )  of finite 

type s.t. A is the universe of !~, P C A is a distinguished predicate, and Card(A) = 

~++, and Card(P)  -- ~+, there is ~B -- (B; P N B , . . . )  s.t. ~ -<~ ~, Card(B) = 

tr +, and Card(P  N B) = ~. 

Silver has shown that the ErdSs cardinal ~r can be used to get the Chang 

Conjecture (R2, ~1) =* (~1, ~0) in a forcing extension (cf. IS]). Afterwards, Donder 

proved that w y is Wl-ErdSs in the core model of Dodd and Jensen provided 

(R2, R1) ~ (R1, R0) (cf. [D]). 

For ~ > w, (~++, ~+) ~ (~+, ~) is much stronger. Variating a construction of 

Kunen, Laver showed how to get, for any n < w, (Rn+2, R~+I) =~ (R~+I, Rn) by 

forcing using a huge cardinal (cf. [F]). On the other hand, (R3, R2) ~ (R2, R1) 

implies the existence of 0 sw~ i.e. a mouse M s.t. oM(~) > 1, some ~ < On NM 

(cf. [V]). In fact, a refinement of the method of [V] might yield a mouse M 

s.t. oM(~) >_ ~, some ~ < O n n M ,  but not more. A slight strengthening of 
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(~3, ~2) =:~ (~2,~1) can be shown to imply o(~) = ~+~, some ~, in an inner 

model (cf. [Sch2]). The exact consistency strength of (~++, ~+) =v (~+, s) is not 

yet known for any g > w. 

Before now stating our theorem let us remark that Foreman (in his [F], w 

sketches how to obtain, given a huge cardinal, for any n < w, an inner model of 

the forcing extension in which both (~n-{-2, bin+l) ::# (~qn+l, lqn) and the G.C.H. 

hold. 

THEOREM: I f  (R4, R3) =# (R3, R2) holds and 2 ~1 = R2 then there is an inner 

model with a strong cardinal. 

Our proof will work with the countably complete core model for one strong 

cardinal, which we denote by K c (cf. [J], [K], [Schl]). We shall use several 

properties of K c in a "black box fashion", so that a reader not familiar with 

core model theory can perhaps follow our treatment. However, the following 

lines sketch the proofs of two essential properties of K c that  will be used. The 

missing details may be found in [Schl], or may easily be derived from results in 

[J]. 

K C is a constructible inner model, in fact a "class-sized mouse", of the form 

L[E] where E = (Ea: a < On) is well-organized sequence of (partial or total) 

extenders. By K c 1 a, a < On, we denote the initial segment J~[E r a] of K c.  

Every K c 1 a is a mouse, and K c has the following properties, for all a < On: 

(a) If K C J. a has a largest cardinal ~ not overlapped in K c,  and there is a 

mouse N end-extending K C ~ a s.t. p~ _< ~r then the minimal such N is an 

initial segment of K c.  

(b) If F is a countably complete extender on K c I a s.t. (K  c ~ a, F)  is a 

premonse, then 0 r E~ = F; and, on the other hand, every E~ r @ which is an 

extender on K c (i.e. E~ is total) is countably complete. 

(a) ensures that  K c is "saturated with so-called collapsing mice", and (b) 

states that  all and only countably complete total extenders are included in KC's 

extender sequence. Beneath standard concepts and facts from the core model 

theory below one strong cardinal, we shall use the following two lemmata. We 

denote by -~L "'~ the assumption that  there is no inner model with a strong 

cardinal. 

LEMMA 1: Assume -~L "t'~ Let ~ be a regular cardinal, and let H~ denote the 

set of all sets hereditarily smaller than ~. Suppose that 7r: [-I --*r.~ H~ is s.t. 
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[-I is transitive, ~[-I C [-I, and r ~ id. Let [~ denote (KC) A, i.e. the countably 

complete core model delined in [-I. Then there is a mouse N end-extending [r 

s.t. p~ < OnnH. 

Proof (Sketch): Note that  r r K: K -*r.~ K e.  Moreover, the assumption 

~/:/ C /it can be used to verify that, if N is a mouse end-extending an initial 

segment M o f / i  and the upward mapping technique (el. [J] or [Sehl]) is used to 

find a "nice" mapping #: N -* Q s.t. ~ D r r M, then Q is a mouse, in turn. 

Now, using methods of [J] (el. also [Sehl]) one verifies that  R is not saturated 

with collapsing mice. Taking a minimal collapsing mouse N omitted i n / ~  one 

finds that  the coiteration of N w i t h / f  does not move K.  Hence some iterate of 

N is as desired, l (Lemma 1) 

LEMMA 2: Assume -~L ..... ". Let ~r E Card KO not be overlapped in K c,  and set 

v := oKC(~) := ~ +Kc plus the Mitchell order of it in K c. Let X C v be s.t. 

Card(X) s~ < Card0r ). Then there is Y 6 K c s.t. Y D X and CardKC(Y) <_ 

to. In particular, this conclusion holds provided 2 s~ _< R2, Card(X) = R1, and 

Card(~r _> ~3. 

Proof (Sketch): The proof is by induction on sup(X). If some X is given, one 

may thus assume that a = sup(X) is a KC-cardinal > tr and choose r:  H --*r~w 

H~+ s.t. {to} U X C ran(r),  " H  C H, and r has a critical point less than ~. 

As in the preceding lemma, there is an end-exteusion N of (KC) B J, r - l ( a )  

s.t. p~ < r - l ( a ) .  Via the upward mapping technique, let ~: N --* Q be s.t. 

fr D zr I (gO) Iel .L zr-l(a), and Q is a mouse. 

An argument is needed to show that Q E K c (cf. [Schl]). But then, as is 

standard in covering arguments, the Skolem functions of Q can be used to get, 

combined with the inductive hypothesis, a covering as desired. | (Lemma 2) 

We now commence with the proof of the theorem. 

Proof of the Theorem: Let us suppose (R4, R3) =~ (R3, R2), 2 ~ = R2, and -~L "''~ 

to hold. We aim to derive a contradiction. 

To commence, choose (H;E) -<r.. (H~, ;e)  s.t. Card(H) = R4, w4 C H, 

and ~ H C H. By the Hausdorff Formula, R4 ~ = R4.2 s: = R4, so this choice is 

possible. As well, because R~ ~ = R2.2 s' = R2, we may then choose S: w2 ~ ~w2 

bijective. Pick F: w4 *-* H bijective. Let G = (ge: ~ < w4) be a family of pairwise 

almost disjoint functions g: ws - '  w3; i.e., for all ~ < ~' < w4, ge(a) .~ ge,(a) for 

all but R2 many a < w3. 
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Moreover, let h: w x [HI <~ ---* H be a N~-Skolem function for the structure 

:= (H; 033, e, S, F, G), and let P: [H] <~' ~ 033 be defined by P({x0 . . . .  , x,~}) := 

sup(h/t(03 X [032 U {X0,. . .  ,Xn}] <w) O033). 

Now set 92:= (H; 033, 6, S, F, G, h, P), and use (R4, R3) =~ (Ra, R2) to 

find ~B= (B; 033 ~ B,  e ,  S [ B,  F r B, G I B, h r B, P I B) -<~ ~[ s.t. 

Card(B) = R3 and Card(033 M B) = R2. Set 6 := sup(033 M B) < w3. 

Let C := h"(w • [032 U B]<~). Clearly, 

r  (C;033NC, e , S  r C, F I C, G rC) --<~ ~, 

Card (C) = ~3, and w2 C C. Hence by a standard argument, w3MC is an ordinal. 

We in fact claim that  033 M C = 6. It suffices to show ~ = sup(033 ~ B) > 033 f3 C. 

Suppose that  ~ E 033 N C. Then ~ E h"(03 • [032 u B] <~) N 033, i.e. there are some 

xo , . . .  ,xn E B s.t. 033 > P({xo, . . .  ,x~}) _> ~. But of course P({xo, . . .  ,xn}) E B 

so that  6 _> 033 N C. 

Now consider a: ~ := (/it,6, E,S, F', (~) - ~ -<~ ~. We have seen that 

6 E (032,033) is the critical point of a, and clearly or(6) = 033. OnN/~ _> 033, 

as otherwise Card(/~) = Card(F" On N/~) < ~3; contradiction! Moreover, if 

OnA/~ > 033 then /~ would have at least five distinct infinite cardinals, viz., 

03,031,032,6, and 033; contradiction! Thus O n n H  = 033, and 03,031,032 and 6 are 

the infinite cardinals of /~.  

We now claim that  cfy (6) = 032. Suppose otherwise, i.e. that cf(6) < 032. Let 

D e [6] <~'1 b e a s e t  of ordinals < 6co f ina l in6 .  Let (~ = (~e:~ <033). ~ 

"G is a family of pairwise disjoint functions g: 6 ~ 6". Hence ge I D ~ de, I D 

for ~ ~ ~', ~,~' < 033, so that  {.~e F D: ~ < 033} has cardinality R3. But 

Card(D) < R1, and ran(.0~) C 6 where Card(6) = R2, so {~  I D: ~ < 033} has at 

most R2 ~ = R2 �9 2 sl = R2 (by 2 ~ = ~2) many members. Contradiction! Hence 

really cf(6) = 032. 

Let X E [03~]<'~, and choose f :  031 ~ X surjective, f e H by ~ ' H  C H, and so 

there is ~ < w2 with S(~) = f .  But then S(~) = f ,  too, because 6 = c.p.(a) > 032, 

and so X = f"031 E [-I. That is, [w2] <~  C/~ .  

We now claim that  ~ / ~  C H. Using ~', it suffices to show that  [033] <'~ C /~ .  

Let X ~ [ws] <'~ be arbitrary. Let c: ~ ~ sup(X) u ~ be bijective s.t. c ~ H. As 

cf(6) = w2, ~ := sup(c-~"X) < 6, and we may thus choose d: 032 ~ ~ bijective 

s.t. d ~ /~ .  Now Y := d -~ o c-l , ,  X ~ [03:]<,o~ c / ~ ,  and so X = c o d " Y  ~ [-I. 
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and mappings from 2 we shall furthermore easily write Wi for W 6 if ~ = i < 

w~, ~rji for ~r~6, if ~ = j _< ~' = i _< w~, and vi for P6 if i = ~ _< W 1. Let ~i be the 

critical point of rii+~, i < w~, and let ~ be the critical point of F. 

CLAIM 3: F is countably complete. 

Proof: Let (Xn, an),~<~ bes.t .  Xn ~ Fa. where a .  �9 [u~] <~, a l ln  < w. Choose 

any i < ~d 1 s.t. there are )(,,, a,~ �9 Wi with ~r~, (.~.) = Xn and ~ri.,~ (~n) = an, 

all n < w. Let v := ~r~, -~ I U,~<~a.: U,,<~an --, Un<. ,a .  �9 Clearly, v is 
w, order preserving and ran(r) C ~r by 2's normality. Using ri~,,)~,, �9 E.~,~,  

and so r"an -- ~,~ �9 r i ~ ( f ( . )  = X . ,  all n < w, again using 2's normality. 

m (Claim 3) 

Now it easily follows from Claim 2 and Claim 3 that H ~ "(/~ J. ~ ,  F)  

is a premouse s . t .F  is countably complete". Hence by the definition o f / ~  as 

(KC) tl, F = E R But because F was used in 2 yielding an end-extension M of 
I / ~ l  " 

[(, E ~  = E M = ~. Contradiction! 

We are left with the task of giving the 

Proof of Claim 2: It is enough to show that, in H, the system (Wi I vi: i 

wl), (Trij I Wi I vi: i < j _< wl) can be "approximated" to a sufficiently close 

degree. (Note that Wi J. vi = / ~  ~ vi, all i < wl.) I.e., it is enough to define, in 

H, a sequence (b~)~<~, of t h r e a d s  for /~  < g~,~ in W ~  ; i.e. b~ = (7~,i)i<,,~ is a 

sequence of ordinals "r~,/< ~ s.t. for all but countably many i < wl, ~r/~,~ ('r~.i) = 

~3. Because assume such (b~)~<~ to be given inside/~. Let a = {/~1 . . . .  ,/~n} E 

[v~] n, some n < w. Then, as usual, for any X E ~([~;]n) n W ~ ,  X E F~ iff for 

all but countably many i < wl, { 7 ~ , i , . . . , 7 ~ , , }  E X; i.e., F is definable in /~ ,  

and thus F E H as desired. 

Following Gitik (cf. his [G] p. 231ff.) we shall use the "Gitik Game" to find 

the correct sequence b~ = (7~,i)i<~,~ inside H (cf. also [G-M] p. 14ft.). Our 

presentation of this game differs slightly from those in both [G] and [G-M]. 

Definition 2: The Gi t ik  G a m e  ~ is defined as follows. The game is played by 

two players, Adam and Eve, who alternatingly make _< w moves. Adam starts 

with his 0th move. On his nth move, n < w, Adam plays a pair (B,,, hn) where 

Bn C v~ ,  Card(Bn) _< lql, B,, D Bn- l ,  provided n > 0, and hn E ~v~ N/~. Eve 

responds, on her n th  move, with a sequence (rn.i: i < wl) where 
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(i) r.,i: R ~ vi D--+s,~ /~" $ u~ ,  i.e. r~,i maps a submodel o f K  I vi elementarily 

into R ~ v~,1, and Card(r,,,i) < R1, all i < wl, 

(ii) r~,i D r,~-l,i for all i < wl, provided n > 0, 

(iii) Bn N h','ai C ran(r~,i) for all but countably many i < r 

If Eve was able to play an nth move, any n < w, then Adam replies with his 

(n + 1)st move. Eve wins a play of @ iff the number of moves is infinite. 

In a play of ~5, Eve has to present her version of a sufficiently large part of 

( /~  ,~ !"*/: i __~ C01) , (Trij r K ~ l/i: i <_ wl), and Adam tries to show her version not 

to be consistent. Note that every play of @ with moves from/-} happens to be 

an element o f / }  by virtue of ~,1/} C / } .  As well, ~5 is open and so determined, 

i.e. either Adam or Eve has a winning strategy (in V, as well as in /}) .  

Subc/aim 1: Eve has a winning strategy for @ in/} .  

Proof: Suppose not. Then Adam has a winning strategy a in/}.  Let us consider 

a play of @ where Adam uses a for his choice of (B~, hn) on his nth move, n < w, 

and Eve replies with (r,~,i: i < r defined by rn,i := lri~,~ r Hi, where Hi is s.t. 

Hi -~ R ~ ui, Card(H/) _< R1, and lr;(~"Bn C Hi, all i < wl, on her nth move 

(chosen in V). We claim that Eve never breaks any of the rules (i)-(iii) of O. 

Let n < w be arbitrary. (i) and (ii) are trivial. Let us check (iii). As the tail of 

the iteration 3 from W~,~ to the end-extension of R is beyond U~,l, h,~ E ~v~t N/~ 

implies hn E W~I (cf. [K] 4.2 (iii)). We have to verify Bn N h"~-~ , C ran(Tri~,~) for 

all but countably many i < Wl. Let i < wl be s.t. there is h E Wi, h = 7ri~,~ (h). 

Let ~ e Bn n h'n'~i be arbitrary, and let ~ < tci be s.t. ~ = h(~). Then ~ = h(~) = 

7ri~, (h)(~) = rri~,l (h({)) e ran(rti~x ). 

Hence this play of O is infinite, contradicting the fact that Adam used the 

winning strategy a for choosing his moves. | (Subclaim 1) 

Let a be any of Eve's winning strategies, and let/~ < v~ .  Consider a play of 

in which Bo = {~}, and ran(ho) = {/3}, and Eve plays according to a. Suppose 

(ro,i: i < Wl) to be her first move. Then/~ E ran(To.i) for all but countably many 

i < r We then let a" /~  denote some (7i)i<~,~ s.t. Yi = ro,/l(/~) for any i < on1 

with/~ e ran(to,i). 

Let c = (7i)i<~, d = (5i)i<~,l be sequences of ordinals. We write c <_ d(c < 

d, resp.) iff for all but countably many i < COl, ^/i <_ $i (7i < ai, resp.). 

(I.e., < denotes "eventual dominance".) 
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Subclaim 2: If b -- (/3i: i < Wl) ~ the thread for/~ in W~,  some/3 < ~ ,  then 

b # a~/3 for any of Eve's winning strategies a. 

Proo~ Suppose not, and let a be one of Eve's winning strategies with a ~  = b, 

some ~ < p~ and b = (~3i: i < Wl) ~ the thread for ~ in W~.  Let us consider a 

play of ~ where B0 -- {~3) - ran(ho), Eve uses a for her choice of (rn,i: i < w~) 

on her n th  move, n < w, and Adam plays as follows. Let n > 0. First he sets 

Bn := ~i<~1 7r~ dom(~'n_~#) e [ , ~ ] < ~  C / 4  (chosen in V). Then, by Lemma 

2 applied inside/~, there is h ~ /~" s.t. h"g D Bn, and Adam sets hn := h for 

some such h. We claim that 

(#) Adam wins this play. 

Proo~ Suppose not. Then the play is infinite. 

Again by [K] 4.2 (iii), h r W~.  Let i < Wl be s.t. there is /t r Wi with 

~r~ (h) = h. If ~ ~ Bn ~ ran(~r~ ), ~ = ~ri~l (~), say, then: 

< = 

SO 

< = 

i.e., for some ~ < hi, Wi p ft(~) = ~, so 

= 

Hence B,~ Oran(Tri~ 1 ) C h"ai for such i. So by rule (iii) for Eve, Bn Nran(Tri~l ) C 

ran(T~#) for all but countably many i < Wl, all n < w. Pick i* < wl s.t. for all 

n < w, Bn A ran(Try. ~ ) C ran(vn,i. ) and s.t. lri-~l (~3i*) < j3 and to#* (j3i.) --- ~. 

Now let us inductively define ( ~ :  n < w) by setting ~o := ~ri*~(~i*) < 

and ~ := 7ri.~ o T~-_ll,i.(~n_1) for n > 0. Note that if 0 < n < w and ~n-1 

is well-defined, then ~?n-1 E Bn-1 N ran(r~.~l) and ~n is well-defined also by 

Bn-1Nran(Tri.~) C ran(Tn-l,i*). We claim that ~n < ~n-1 for all n < w, n > 0. 
- 1  As 70,i* (13i*) : t3, T]I : 7~i.wl o T0,i. (~0) < 7ri.wl(Zi.) : ~0. I f ~ n  < ? ' In- l ,  some 

-1 = 7 -1 *(~?n-1) by (i) and (ii) of n < w, n > 0, then V~,~.(~n) < T~,i.(fin-1) n-l,i  

Eve's rules, and thus ~n+l = 7ri.~ o T-. 1 (fin) < 7ri.~, o v~11 i.(~n-1) = fin. 

We have found an C-descending sequence of ordinals of length w. Contradic- 

tion! I (#) 
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But now we have reached a contradiction, because Adam wins this play al- 

though Eve follows her winning strategy a. I (Subclaim 2 ) 

It can easily be checked now that for any given ~ < u,~ 1 , Eve has, in /~, a 

winning strategy a s.t. a - ~  is a thread for ~3 in W,,~. Hence using Subclaims 1 

and 2, the thread bz may be defined inside/~ as a <_-minimum of { a - ~ :  a is one 

of Eve's winning strategies}. I (Claim 2) 

I (Theorem) 

Of course, there is a wide gap between strong and huge cardinals, and the 

consistency strength of (b~4. R3) =~ (R3, l%) + 2 ~1 = R2 lies somewhere between 

them. Moreover, the method of our proof yields the little bit generalized result 

from the abstract. But it does not yield L str~ from (R3, R2) => (1%, lql)+ C.H. 

which would require one to reconstruct, i n / ) ,  an extender which has been used 

only w many times. [Sch2] yields more than o(,~) >_ n +~' in an inner model if the 

latter Chang Conjecture + C.H. holds. 
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